资讯导航
 
 
改善ARVR力反馈触感交互,Meta提出恒定流体质量控制CFMC
作者:k彩平台    发布于:2021-12-15 11:42:35    文字:【】【】【
摘要:由于柔性致动器比刚性执行器具有更好的接触柔顺性、更低的重量和阻力,所以柔性致动器在机器人和可穿戴触觉领域越来越流行。业界已经探索了一系列为柔性致动器提供动力的不同能源,包括流体驱动、静电驱动、电磁驱动和热驱动。 由于其高能量密度和低阻力,柔性流体致动器广泛用于可穿戴设备,而相关文献主要探讨了恒定流体压力控制(CFPC)来控制柔性致动器。这
由于柔性致动器比刚性执行器具有更好的接触柔顺性、更低的重量和阻力,所以柔性致动器在机器人和可穿戴触觉领域越来越流行。业界已经探索了一系列为柔性致动器提供动力的不同能源,包括流体驱动、静电驱动、电磁驱动和热驱动。 由于其高能量密度和低阻力,柔性流体致动器广泛用于可穿戴设备,而相关文献主要探讨了恒定流体压力控制(CFPC)来控制柔性致动器。这种控制方法使用简单的驱动结构(每个致动器一个离散阀)和二元(开-关)控制机制,允许致动器压力追踪动态负载下的流体源压力。 然而,CFPC因此而具有几标签9个局限性:(1)有限的动态范围:柔性致动器提供的力的动态范围有限,并且仅受其工作压力控制,因为致动器压力只能在源压力和大气压力之间切换;(2) 致动器响应缓慢:柔性执行器的充气和放气响应标签4时间由源压力决定,不能独立调节。(3) 低压控制分辨率:这种类型的控制只能实现致动器压力的二进制控制。(4) 非自然的触觉交互:只可能实现主动或外源控制致动器压力,它与用户和致动器的交互方式没有内在联系,从而导致非自然的触觉交互。 为了解决所述限制,美国西北大学和Meta在名为《Constant Fluidic Mass Control for Soft Actuators Using Artificial Neural Network 标签1Algorithm》的论文中提出了一种恒定流体质量控制(CFMC),其中恒定质量的流体困在致动器内。当用户与致动器交互时,由于这种交互导致的致动器压力任何变化可进一步帮助改善触觉交互。与使用压力传感器和第一原理模型估算流体质量的文献不同,团队是通过精确控制阀门的定时,并将其困在致动器内来调节流体质量。 使用CFMC的模拟压力控制需要整个射流系统(包括致动器)的可靠模型。有其他研究人员开发了基于第一性原理的理论模型来预测致动器行为,但所述模型只能在有限的输入集合中近似致动器的行为,不能可靠地捕捉流体系统中的所有非线性,因此很难对不同的柔性致动器进行泛化。在研究中标签5 ,美国西北大学和Meta为可穿戴触觉提出了一种新的流体驱动方案CFMC。 据介绍,这种方法允许更大的动态范围、更快的响应时间和柔性致动器的模拟压力控制,并产生更自然的触觉交互。研究人员实现了一个射流系统来演示CFMC方法,并使用系统对柔性致动器进行了实验。另外,团队提出了一种基于神经网络的有监督学习算法,使模拟压力控制的柔性致动器使用CFMC,并泛化到新的致动器。 实验将CFMC与CFPC方法进行了比较。结果表明,CFMC可以增加柔性致动器的动态范围,缩短其响应时间以达到所需的压力,并实现模拟压力控制,从标签10而提供更自然的触觉反馈。


这是水淼·PHPWEB站群文章更新器的试用版本更新的文章,故有此标记(2021-12-15 11:42:37)
附件下载:www.dealmotorcars.com (已下载0次)
版权所有 Copyright(C)2013-2022 k彩注册官网
网站地图